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Abstract 

 
Detecting web attacks is a major challenge, and it is observed that the use of simple models 
leads to low sensitivity or high false positive problems. In this study, we aim to develop a 
robust two-stage deep learning based stacked ensemble web application firewall. Normal and 
abnormal classification is carried out in the first stage of the proposed WAF model. The 
classification process of the types of abnormal traffics is postponed to the second stage and 
carried out using an integrated stacked ensemble model. By this way, clients’ requests can be 
served without time delay, and attack types can be detected with high sensitivity. In addition 
to the high accuracy of the proposed model, by using the statistical similarity and diversity 
analyses in the study, high generalization for the ensemble model is achieved.  Within the 
study, a comprehensive, up-to-date, and robust multi-class web anomaly dataset named GAZI-
HTTP is created in accordance with the real-world situations. The performance of the proposed 
WAF model is compared to state-of-the-art deep learning models and previous studies using 
the benchmark dataset. The proposed two-stage model achieved multi-class detection rates of 
97.43% and 94.77% for GAZI-HTTP and ECML-PKDD, respectively. 
 
 
Keywords: Anomaly detection, deep learning, ensemble learning, web application firewall, 
web security. 
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1. Introduction 

Web applications have become the primary targets of attackers with their widespread use 
nowadays. Many automated vulnerability-scanning tools constantly scan new web 
applications to reveal and exploit vulnerabilities. Even attackers named script kiddies with 
little knowledge can perform very sophisticated and damaging web attacks using ready-to-use 
attacking tools. In addition, according to the analysis performed on all vulnerabilities, the rate 
of critical vulnerabilities in the web application layer is approximately four times in the 
network layer [1]. However, when the literature is examined, it is seen that there are much 
more network-based intrusion detection system (IDS) studies than web-based studies [2]. The 
Open Web Application Security Project (OWASP) publishes the Top-ten most critical web 
vulnerabilities periodically [3]. Most common web attacks in the current version of OWASP 
top-ten vulnerabilities [3] are 42% SQL injection (SQLi), 19% Cross-site scripting (XSS), 7% 
Remote code execution (RCE), and 5% sensitive file disclosure attacks [1]. Injections are the 
most critical vulnerabilities on the OWASP top list and cover attacks, such as SQLi and RCE. 
Sending unsanitized payloads to an interpreter as part of a command or database query causes 
injection attacks. Attackers execute unintended commands on the interpreter with malicious 
payloads using injection vulnerabilities for privilege escalation or to access data with improper 
authorization [4-6]. Similarly, XSS attacks are caused by insufficient filtering and sanitization 
of the JavaScript or HTML commands received from the clients. In addition to changing the 
appearance of web applications with XSS attacks, this may cause session hijacking of victims 
due to the stealing of cookies. XML external entity (XXE) vulnerability occurs when the XML 
parser is misconfigured. In particular, XXE attack can lead to the disclosure of hidden system 
files, server-side request forgery (SSRF) vulnerability, denial of service and other system 
problems. File inclusion vulnerabilities occur when internal or external files and paths are 
included to the web application without being properly sanitized. Local File Inclusion (LFI) 
vulnerability causes the disclosure of sensitive files in the system, while Remote File Inclusion 
(RFI) causes the inclusion of external harmful files or paths to the system. Server Side Includes 
(SSI) attack adds dynamic content to static web pages, allowing malicious commands or 
scripts to run on the system. Web vulnerabilities can generally cause critical problems such as 
the disclosure or the corruption of sensitive data, privilege escalation, seize of victims’ 
information or authorizations, denial of service or hacking of web servers.  

Preventing these threats is a very important challenge, and in general, the following three 
different approaches can be applied. 
• Direct approach: Developing web applications in a completely secure way during all 

the development phase, 
• Testing approach: Detecting vulnerabilities in the web application by penetration tests, 

black-box and white-box tests, fuzzing or static/dynamic analysis of codes, 
• Protective approach: Detecting attacks with web application firewalls (WAF), 
Neither of these approaches alone is enough to provide full web security. All three 

approaches should be used together to ensure the security of critical web applications. Among 
all, the use of WAF is the most effective method for detecting and preventing web attacks. 
Network-based IDS (NIDS) cannot protect against web vulnerabilities. However, WAF 
systems detect attacks by deeply analysing the content of web requests, unlike NIDS. Web 
anomaly detection is a very laborious problem because the characteristics of web requests are 
generally very similar to each other [7]. Due to the nature of attack detection, the data have 
highly imbalanced distributions. Therefore, the development of an anomaly-based WAF 
system, which can classify rare types of attacks with high precision, is an important challenge 
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[4, 6]. Binary-class attack detection can be performed with high accuracy with a single 
algorithm-based model. However, multi-class attack detection is particularly prone to the high 
variance (over-fitting); therefore, generalization problem occurs. Also, it is difficult to classify 
the uncommon attack types because of the high bias (under-fitting) caused by the imbalanced 
distribution, so it is obvious that it will be very difficult to detect multi-class web anomalies 
in real-time with a single algorithm based classification model. An ensemble model combining 
weak base models in multi-class web anomaly detection will be more compatible with the real 
world. The primary task of WAF systems is to detect whether incoming requests are attack or 
normal web requests. However, to analyse the attack traffic, the type of attack traffic should 
be classified and reported to the system administrator. This allows system administrators to 
more easily identify the target and purpose of the attack, and to patch any vulnerability that is 
being exploited. However, performing multi-class classification of attack type together with 
intrusion detection (normal-abnormal classification) negatively affects the success and time 
performance of anomaly-based WAF systems. 

In this study, a deep learning based stacked ensemble WAF model is developed that can 
detect web attacks in two stages. In the first stage of the developed WAF model, web requests 
are classified as normal and abnormal in binary-class. In the second stage, multi-class 
classification is performed with the stacked ensemble model. In the second stage, the requests 
classified as abnormal in the first stage are processed and the types of attacks are detected. 
Thus, the complexity arising from multi-class detection is transferred to the second stage, so 
web applications continue to serve without a time delay. Deep learning-based models are used 
in both stages of the developed WAF system. 

Some of the main contributions of this study are summarized below: 
• Normal requests do not need to be processed by the sophisticated model required by 

multi-class classification with the two-stage structure in the study. Thus, normal 
requests are saved from time delay and high false positive (FP), classified in a fast and 
high accuracy. 

• Attack types are classified with high precision and accuracy thanks to the integrated 
stacked ensemble model used in the study. 

• A very comprehensive web anomaly data set with a high ability to generalize called 
GAZI-HTTP is created. 

• The models developed in the study are compared with previous studies using the 
benchmark ECML-PKDD dataset. In addition, by using GAZI-HTTP and ECML-
PKDD datasets, models based on a single algorithm are developed and compared with 
the proposed model using DNN, CNN, GRU, and LSTM, which are among the most 
widely used deep learning models in cyber-security. To the best of our knowledge, the 
proposed model has the best results in detecting web attacks. 

• The GAZI-HTTP dataset and source codes created within the scope of the study will 
be publicly shared with other researchers to enable reproducibility and contribute to 
future research*. 
* https://github.com/mehmetsevri/Two-Stage-Deep-Learning-Based-Stacked-
Ensemble-Model-for-Web-Application-Security 

 
The remainder of this paper is organized into five sections as follows. In the next part of 

the study, related studies on web security are discussed briefly. In the third section, 
preliminaries about feature construction from web requests, deep learning algorithms and 
diversity analyses used in the study are presented. In the fourth section, detailed information 
about the methodology of the study and the general structure of the proposed model are 

https://github.com/mehmetsevri/Two-Stage-Deep-Learning-Based-Stacked-Ensemble-Model-for-Web-Application-Security
https://github.com/mehmetsevri/Two-Stage-Deep-Learning-Based-Stacked-Ensemble-Model-for-Web-Application-Security
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presented. The performance evaluations of the experimental studies carried out in the fifth 
section are presented with discussions. Besides, the performances of the proposed model are 
compared to similar studies and state-of-the-art deep learning models. The last section consists 
of the conclusions and future research. 

2. Related Work 
In this section, important studies and methods used in the field of web security, especially 
anomaly-based studies are discussed. Two main methods are used in the development of WAF 
systems, namely signature-based and anomaly-based. In the field of web security, intrusion 
detection is carried out with four different approaches derived from the two main methods 
given above. These are signature-based (misuse) [4, 5, 7, 8], anomaly-based [9-13], policy-
based [14], and hybrid attack detection systems [15]. The advantages, disadvantages, and 
challenges of the WAF approaches are presented in Table 1. 
 

Table 1. The advantages, disadvantages, and challenges of WAF development approaches. 
Approaches Advantages Disadvantages Challenges 
Signature-
based WAFs 
[4, 5, 7, 8] 

Very effective in 
detecting known attacks 

Failing in detecting newly 
emerging attacks; Bypassing 
using encoding techniques 
[13] 

Updating the signature 
database 

Anomaly-
based WAFs 
[9-13] 

Effective in detecting 
known and newly 
emerging attacks 

High FP rate; high variance 
(overfitting) and high bias 
(underfitting) [16] 

Feature extraction and 
selection; Generalization 
for real-world 

Policy-
based WAFs 
[14] 

Elimination of the 
disadvantages of 
signature and anomaly-
based systems 

Vulnerabilities due to 
incorrect sequencing of 
policies [14] 

Requirement for domain 
experts, Difficulties in the 
operation of policies at 
large-scale systems 

Hybrid 
WAF 
systems [15] 

Combining the power of 
signature-based and 
anomaly-based systems 

The disadvantages of 
signature-based and 
anomaly-based systems 

Requirement for domain 
experts to the management 
of security rules [15] 

 
Two different web security studies have been carried out by Nguyen et al. [9, 10], one of 

which is based on feature selection, and the other is based on an ensemble model, using 
different traditional machine learning algorithms. The authors [10] developed WAF models 
based on generic feature selection (GeFS) and different machine learning. The authors 
measured the performance of different models by manually extracting 30 different features 
from web request, and reducing features with the proposed GeFS. In their studies, an average 
detection rate of 97.04% was achieved by removing 63% of the features with GeFS for binary-
class four traditional machine learning algorithms on the ECML-PKDD dataset. In the second 
study [9], the authors proposed an adaptive learning binary-class ensemble (A-ExIDS) WAF 
model that combines different IDS outputs with weight values. The A-ExIDS method achieved 
higher success than major voting and Hedge / Boosting ensemble combining methods and a 
92.56% detection rate was achieved for ECML / PKDD. Similarly, Tama et al. [17] proposed 
a stacked ensemble WAF model in which different ensemble models were used instead of 
using machine learning algorithms as base learners. The authors performed web anomaly 
detection with a stack of ensemble models combining the outputs of three different ensemble 
models. The authors used random forest, gradient boosting, and XGBoosting ensemble models 
as base classifiers and combined the outputs with the generalized linear model (GLM). When 
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the results were examined, it was seen that the performance of some base models was higher 
or very close to the proposed model and the proposed model did not provide a significant 
improvement [17]. In addition, while some of the models used as base learners were nonlinear, 
the generalization would be poor since the outputs were combined with a linear model. Luo et 
al. [18] proposed a method that sequentially combine the XGBoosting and the positive-
unlabelled (PU) learning model based on payloads in web requests. The authors first send the 
payloads to the ensemble model by vectorising them according to ASCII values, and then 
normal requests are sent to the PU learning model to detect unknown attacks. Since only 
payloads are taken into account in the proposed model by the authors [18], attacks in different 
parts of the web requests such as directory traversal or XXE cannot be detected. 

Vartonui et al. [13] developed binary-class web anomaly models based on stacked-
autoencoder and DBN-based feature selection and one-class algorithms. The authors used N-
gram for feature extraction from web requests. The authors achieved a detection rate of 84.13% 
in model tests performed on the ECML-PKDD dataset. In another similar web anomaly study 
[11], the authors showed that the classification performances are increased by using the word 
embedding method in single deep learning models based on CNN and DNN. However, the 
weighted average of detection rates for attack types in tests performed on ECML-PKDD is 
calculated as 84.0% [11]. This demonstrates that a single model cannot achieve sufficient 
success in classifying web attack types. 

Catak developed a model for the malicious network traffic classification that relies on 2-
layer classification models to reduce time consumption [19]. In these presented studies in 
which multiple attack type classification is carried out, web request attack detection is 
generally performed with a single-stage multi-class classification model. However, since the 
main purpose of WAF systems is to classify attack and normal traffic, it will be more effective 
to simplify the problem by applying the divide and conquer technique and performing binary-
class detection in the first stage. The main motivation for the realization of this study is the 
creation of a two-stage structure in which the complexity of the attack type detection process 
is postponed to the second stage in order not to affect the real-time performance of anomaly 
detection of the deep learning-based WAF system. An important difference of this study from 
the previous ones is the creation of a two-stage model. In this way, it is ensured that web 
applications work at a speed that can be used in the real world. In addition, thanks to the 
stacked ensemble model which combines robust base learners developed for the classification 
of attack types, higher accuracy and sensitivity are achieved compared to other studies. 
Moreover, while creating the ensemble model, base learners providing high diversity are 
selected with statistical methods and high generalization power is aimed for real-world 
systems. Our study differs from other studies in that we use a real-world dataset, namely 
GAZI-HTTP. 

3. Preliminaries of Feature Extraction, Algorithms and Diversity 
Analyses 

In this section, preliminary information about feature extraction from web requests, algorithms 
used in the study, and diversity analyses used in measuring model generalization power are 
given. 

3.1. Feature Extraction 
Artificial neural network (ANN) models do not accept text-based data as direct input. For this 
reason, encoding into numerical word vectors by means of feature extraction are required to 
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feed text-based web requests into ANN-based network. Feature extraction from text-based 
data is carried out in two main steps: word tokenization and word embedding. In the first step, 
numeric word tokens must be extracted from character and character sets with the word 
tokenization process. In the second stage of feature extraction, the word embedding process, 
which provides the representations of the word tokens in similar web requests, should be 
performed. 

Since web attack types involve certain patterns, feature construction becomes important. 
When the web security studies in the literature are examined, it is possible to determine the 
features manually or to use frequency-based methods such as N-gram [4, 13] and TF-IDF [5]. 
Although it is simple to extract features with N-grams, it has significant disadvantages [20]. 
N-gram cannot represent the meanings and relationships of the patterns in web requests. In 
addition, determining the value of n is an important challenge. Whereas the meaningful content 
is not sufficiently represented in small n values, high n values cause the sparsity problem. In 
the TF-IDF method, the frequency of the words and the coexistence of the words are calculated. 
However, the relationships between words and their semantic structures are not considered. 
With state-of-the-art Bag-of-words techniques, such as Word2Vec, fastText, Glove, and Keras, 
important semantic structures are covered.  Therefore, very important achievements are 
provided in Natural Language Processing (NLP) problems. With the use of bag-of-words 
techniques, meaningful connections are created between words in web requests, especially 
URL and payload parts. Within the scope of this study, the Keras tokenizer is used in the 
creation of word tokens. Keras word embedding, which focuses on the frequency and co-
occurrences of words in the web request, is used in the study. Thus, powerful features, used in 
the classification of web requests, are constructed. 

After feature extraction, feature selection is one of the most important challenges affecting 
success in traditional machine learning algorithms. Deep learning algorithms handle feature 
selection and dimension reduction processes thanks to their structure. Deep learning models 
remove insignificant features in each layer by reducing their weights and ensure that the 
significant features are transferred to the next layer. Since deep learning-based models are used 
within the scope of this study, the feature selection or dimensionality reduction process is not 
carried out. 

3.2. Ensemble Learning 
In classical learning, the most successful classifier model is determined by creating separate 
models for a problem by using different state-of-the-art algorithms. There are problems where 
algorithms can work well, as well as challenges that they cannot solve. It is very difficult to 
classify datasets with big volume, multi-class and imbalanced distributions, via a single 
classifier. Ensemble learning is a method that enables decision-making by combining the 
outputs of more than one model. Ensemble learning is based on Surowiecki's [21] theory of 
collective intelligence. The four basic rules that a successful collective intelligence must 
contain are the diversity of opinion, independence, decentralisation, and aggregation [21]. An 
ensemble model can be realized by training a base model with the same structure with different 
sub-learning sets. At the same time, training models with different structures or algorithms 
with repetitive or non-repetitive sub-learning sets can realize an ensemble model. In this way, 
complex problems can be solved by ensuring cooperation in collective action [22]. To create 
a successful ensemble model, successful base models must be combined. However, it should 
be ensured that the outputs of the learners are lowly correlated with each other by using the 
base learners with high diversity. The performance and diversity of base learners are generally 
inversely proportional [22]. Base learners with high successes generally contain low diversity 
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and vice versa. Ensemble learning is generally based on combining the predictions of base 
classifier models and is shown with the following equations (1-3). 𝑫𝑫𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕 denotes training data, 
𝒉𝒉(𝑿𝑿𝒊𝒊) denotes classifier based on a specific algorithm, 𝑿𝑿𝒊𝒊 denotes 𝒊𝒊. inputs, and 𝒀𝒀𝒊𝒊 denotes 
their model output. 

Training Data: , ; 1,2,...,train n nD x y n N= =   (1) 

Base Classifier: ( ): trainL D h X→ , where ( ) :i i ih X X →ϒ   (2) 

Ensemble Classifier: 

( )
( )

( )

( ) ( ) ( ){ }
1 1 1

2 2 2
1 1 2 2

:
:

...
...

:

train

train
T T

T train t T

L D h X
L D h X

h X h X h X

L D h X

 → 
 → ⇒ ∪ ∪ 
 
 → 

 (3) 

There are different approaches for creating ensemble models; the most well-known are 
Bagging and Boosting. The bagging method is based on training base models based on the 
same algorithm with new sub-learning sets produced by random selection and substitution 
from the existing learning set. One of the most known and successful bagging algorithms is 
the Random forest. Bagging algorithms show high correlation and low diversity in high 
similarity datasets such as web requests, despite the random data selection [23]. Weak 
classifiers are used in the boosting method. Base learners work sequentially, and each base 
learner is trained to correct the error of the previous one. The most known boosting algorithms 
are Adaptive Boosting (AdaBoost), Gradient-Boosting, and XGBoost. Boosting algorithms 
are generally highly affected by noise [23]. Since attackers tend to encode attack payloads in 
general, boosting methods may be insufficient against these attacks. 

In this study, a stacked ensemble model [24] based on different deep learning algorithms 
is used. The stacking technique can prevent bias towards base learners independent from the 
learning set [24]. All classification models can be used as a base learner in stacking models. 
Ensemble learning can be created with models trained with different parameters based on a 
single algorithm suitable for the problem, or it can be created with models based on different 
algorithms. The generalization feature is important for detecting emerging attack types in 
anomaly-based intrusion detection systems. The generalization features of ensemble models 
are directly related to the similarities and diversities of the base learners they contain. 
Generally, predictions of base learners based on the same algorithm have high similarity even 
if they are trained with different parameters and sub-datasets.  The most effective method to 
ensure high diversity is using base learners based on different algorithms [25]. As such, it is 
desirable to use a suite of base learners that are structured in very different ways, ensuring that 
they make different predictions and, in turn, have less correlated prediction errors [25].   One 
of the main purposes of this study is to design a real-time WAF system with high diversity and 
high generalization ability.  Therefore, to create a WAF system with a high generalization 
feature within the scope of our study, two suitable base learner models based on CNN and 
DNN with high accuracy were constructed. 

3.3. Base and Meta Classifier Algorithms 
Within the scope of the study, DNN and CNN algorithms are used in the first and second 
stages. In this section, a brief introduction to the algorithms used in the study is presented. 

3.3.1 Deep Neural Network (DNN) 
The DNN is the most basic DL algorithm and consists of interconnected artificial neurons in 
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many successive layers [26]. Although DNN has a non-complex architecture, it is a robust and 
state-of-the-art DL algorithm that works with high accuracy performance in many different 
areas. However, it is highly affected by model parameters and optimization methods. Training 
of DL models is generally more time-consuming than base ANNs. The computational 
complexity and time consumption of the DNN models are much lower than other DL 
architectures [26]. The DNN algorithm creates representations between the input vectors and 
the expected outputs by building links between neurons in layers based on weight values.  

3.3.2. Convolutional Neural Network (CNN) 
The CNN algorithm is one of the most widely used methods in the literature. Although it is 
generally used in the field of image processing, it can also be used effectively in NLP problems. 
CNN architecture can generate robust generalization and representation vectors by 
convolutions and pooling processes. The CNN architecture has a series of convolution layers 
that convolve inputs, provide feature maps and transfer them to the next layer. The pooling 
layers, which are frequently connected to the sequences of convolutional layers, realize the 
down-sampling and reduce the number of network parameters. Maximum or average pooling 
techniques are often used for the subsampling stage. Architecture is created in which the 
significant features are transferred to the next layer by applying convolution and pooling 
processes to the inputs. The CNN architecture tries to converge to the minimum error rate by 
updating the parameters with back-propagation [27]. Usually, at the end of the network, there 
is a fully connected layer followed by a classification layer. 

3.4. Statistical Similarities and Diversity Analyses of Stacked Ensemble Models 
The similarities, correlations, and the diversities of base models are the most effective factors 
for the generalization ability of the ensemble model. The ability of the ensemble model to 
simulate real-world problems depends on the high success and the diversity of the base models. 
However, the two factors are generally inversely proportional, when the successes of the base 
models increase, their diversity decreases, and vice versa. It is important to ensure the trade-
off between performance and diversity when creating ensemble models. 

There are many statistical similarity analysis methods used for binary models. However, to 
the best of our knowledge, there is no general method for the diversity analysis of multi-
classifier and multi-class models. It requires the adaptation of existing binary similarity and 
diversity methods to multi-model and multi-class according to the problem. In this study, five 
different statistical methods are used to measure the similarity and diversity of the base models. 
These are Cohen kappa coefficients, Pearson correlation p-value, Yule Q statistics, 
Disagreement Measure (Diversity), and double-faults methods. The details of these methods 
used for the diversity of stacked models are given below. 

Cohen Kappa Coefficients: The Cohen kappa coefficient 𝑲𝑲𝒊𝒊,𝒋𝒋 between the two classifiers 
is calculated as in (4) [28]. 𝝆𝝆𝟎𝟎 denotes the relative observed agreements between the classifiers, 
and 𝝆𝝆𝒆𝒆  denotes the hypothetical probability of chance agreements of the two classifiers. 
Within the scope of the study, kappa statistics of stacked models are measured as the average 
kappa scores of base classifiers. The average kappa coefficient 𝑲𝑲 of an ensemble model 
consisting of 𝑴𝑴 base classifiers is calculated as in (5) [28]. 

0 0
,

11
1 1

e
i j

e e

p p p
p p

κ
− −

= = −
− −

       (4) 

,
1 1

2
( 1)

M M

i j
i j iM M

κ κ
= = +

=
− ∑ ∑   (5) 
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Pearson correlation p-values: The Pearson coefficient used in the study is derived from 
measuring the similarity of binary classifiers in the literature, specific to multi-class anomaly 
detection. The p coefficient of the stacked ensemble model is calculated as the average of the 
binary p coefficients scaled by the number of labels and the number of base classifiers. 
Pearson's p values are calculated by using the following terms [29]. 

• NTT : Total number of predictions classified correctly by both Classifier-1 and 
Classifier-2, together. 

• NTF : Number of predictions correctly classified by Classifier-1, while incorrectly 
classified by Classifier-2. 

• NFT : Number of predictions incorrectly classified by Classifier-1, while correctly 
classified by Classifier-2. 

• NFF : Total number of predictions misclassified by both Classifier-1 and Classifier-2, 
together. 

The correlation coefficient 𝝆𝝆𝒊𝒊,𝒋𝒋 between the two classifiers is calculated as in (6). The average 
correlation coefficient 𝝆𝝆 of the stacked model based on the correlations of base model pairs is 
calculated as in (7) [29]. 

( )( )( )( ),

TT TF TF FT

i j TT TF FT FF TT FT TF FF

N N N N

N N N N N N N N
ρ −

=
+ + + +

 (6) 

,
1 1

2
( 1)

M M

i j
i j iM M

ρ ρ
= = +

=
− ∑ ∑   (7) 

Yule's Q statistics: Q-statistics is an effective diversity analysis test based on the Chi-square 
distribution. The Q coefficient between the two classifiers is calculated as in (8) [28, 29]. The 
average Q coefficient for the ensemble model consisting of 𝑴𝑴  base learners is calculated as 
in (9) [29]. 

,

TT TF TF FT

i j TT TF TF FT

N N N NQ
N N N N

−
=

+
       (8) 

,
1 1

2
( 1)

M M

i j
i j i

Q Q
M M = = +

=
− ∑ ∑   (9) 

Disagreement Measure (Diversity): The Disagreement measure is calculated by the ratio of 
the opposite predictions by the two classifiers to the total number of predictions. The 
disagreement measure of the two classifiers is calculated as in (10). The average disagreement 
measure of the ensemble model consisting of 𝑴𝑴  base classification models on the test set 
consisting of 𝑵𝑵 elements is calculated as in (11) [28]. 

,

TF FT

i j TT TF FT FF

N Ndis
N N N N

+
=

+ + +
  (10) 

,
1 1 1 1

2 2
( 1) ( 1)

M M M M
TF FT

i j
i j i i j i

dis dis N N
M M NM M= = + = = +

= = +
− −∑ ∑ ∑∑  (11) 

Double Faults: The fact that base classifiers misclassify with the same label is the factor that 
most negatively affects the success of the ensemble model. The calculation of double fault 
between two classifiers is shown in (12). The average of double faults for the ensemble model 
consisting of 𝑴𝑴 base learners is calculated as in (13). 

( )

,
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i j TT TF FT FF
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4. Methodology 

Within the scope of this study, a new WAF that can detect web anomalies in two stages is 
developed. The architecture of the proposed model in the study is shown in Fig. 1. In the first 
stage of the proposed web anomaly detection method, HTTP requests are classified as normal 
or abnormal with the developed binary-class model. Binary-class classification is carried out 
with a fast and effective model based on DNN in the first stage. Normally classified requests 
are sent directly to the webserver for processing. Web requests detected as attacks are dropped 
from the network and a copy of the request is sent to the second stage. Normal clients are not 
affected by the time and performance costs arising from the complexity of classifying attack 
types. In the second stage, the attack types of requests, which are detected as anomaly before, 
are classified with a more sophisticated deep learning-based stacked ensemble model. The 
pseudocode for the detection of web anomalies with the proposed model is shown in Table 2.  
 
 

 
 

Fig. 1. The architecture of the two-stage DL based stacked ensemble model 
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Table 2. Pseudocode for detection of web anomalies with the proposed model 
 Input: Web requests  { }1 2, ,..., mx x xΩ← Ω ← {(x1, x2 … , xm)} with HTTP Request x , 

Sequences ( ) ( ){ }11 12 1 1 2, ,..., ,..., , ,...,n m m mnS s s s s s s←  with tokenized sequence item s  

Embedding vector , ,m n kE ←  processing word embedding using k embedding dim ix←∀ ∈Ω  
Output: mP ; Normal tags or Attack types of given HTTP Requests  

1. for , ,i m n kR E∀ ∈ ∀xi ∈ Ω  do 

2.      Predict: ( )i FIRST STAGE iP Model R−←  detect normal or anomaly using the binary-class model 
3.      if " "iP Normal= do  
4.           send HTTP request ix to the webserver for processing 
5.      else do // if HTTP request ix is classified as "Abnormal" in the first-stage← Ni*Ci + Si*Ci'  
6.           Drop: drop ix HTTP request from the network and send iR  to second-stage model  
7.    Predict: ( )i SECOND STAGE iP Model R−←  detect the attack type using the stacked ensemble 
8. end for 

 
The flow chart of the proposed model in the study is shown in Fig. 2. As seen in Fig. 2, the 

development of the web anomaly detection model was carried out in two stages. Firstly, pre-
processing of web requests and word tokenization operations were performed. In the first stage, 
a binary-class web anomaly detection model based on DNN was created by performing 
training and testing with web anomaly datasets. In the second stage, base learners were created 
by performing training and testing CNN and DNN models using only attack requests, and a 
meta learner model based on DNN was created by using predictions of these base learner 
models. The theoretical structures and mathematical representations of the models in the first 
and second stages are given below. Besides, the fundamental methods and techniques used in 
the development of models are explained. 
 

 
 

Fig. 2. The flow chart of the training and anomaly detection phases of the proposed model 
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4.1. First Stage: Binary-Class Web Attack Detection 
Since web applications are time-sensitive systems, it is important to respond to normal clients' 
requests to the web application as quickly as possible. The first stage is very important in 
detecting and preventing attacks, and it is determined whether web requests are dropped or 
forwarded to the webserver. Therefore, it is aimed to develop a model with high classification 
success, low FP rate, and processing very fast. In the study, different binary-class models based 
on CNN, DNN, Gated Recurrent Unit (GRU), and Long Short Term Memory (LSTM) deep 
learning algorithms are trained and tested. The DNN model is determined as the fastest and 
most effective binary-class model for both datasets. It is seen that the highest computing power 
consumptions are required for LSTM and GRU based models, respectively. Within the scope 
of the study, firstly, cleaning of numeric and special characters except letters in web requests 
and data processing were carried out. At this stage, word sequences were created by separating 
words according to special characters and spaces in web requests.  The words were converted 
into numerical values by tokenization process for entering the DNN model. The training 
process of the DNN model was carried out by using web requests with two different labels as 
normal and abnormal in datasets. In the first layer of the DNN model, there is the word 
embedding layer, which creates word vectors based on the relationships between the tokenized 
words. The architectural structure of the proposed DNN model for binary-class attack 
detection to be carried out in the first stage is shown in Table 3. To create the best model to 
be used in the first stage binary-class classification, a large number of models based on 
different numbers of layers and neurons have been tested. In our study, it has been determined 
that the model with DNN architecture in Table 3 is the fastest model with sufficient 
performance for the first stage. The model consists of two DNN layers following the 
embedding layer and a prediction layer with Softmax at the output. 

Fine-tuning is processed in the first stage for the optimization of the DNN model. To 
prevent over-fitting, dropout is applied with a 0.01 ratio after both DNN layers. Rectified 
Linear Unit (ReLU) is used as the activation function in the DNN layers. The Adam 
optimization algorithm with a learning rate of 0.001 is used for the optimization of the model. 
The binary cross-entropy loss function is used as the loss function. The batch size to be used 
in each iteration at the training stage is set to 1024. 
 

Table 3. The architecture of the binary-class classifier model in the first stage. 
Layer (Type) Input Shape Output Shape Activation Function 
Embedding (𝑚𝑚,𝑛𝑛) (𝑚𝑚,𝑛𝑛, 8) - 
Flatten (m,n,8) (m, n*8) - 
Dense-1 (𝑚𝑚,𝑛𝑛 ∗ 8) (𝑚𝑚, 64) tanh 
Dropout-1 (𝑚𝑚, 64) (𝑚𝑚, 64) - 
Dense-2 (𝑚𝑚, 64) (𝑚𝑚, 64) tanh 
Dropout-2 (𝑚𝑚, 64) (𝑚𝑚, 64) - 
Dense (𝑚𝑚, 64) (𝑚𝑚, 2) Softmax 

4.2. Second Stage: DL Based Stacked Ensemble Model for Classification of Web 
Attack Types 
In the second stage, attack types are classified, and models are trained using only web attack 
requests in datasets. The architectural details of the base models and the meta learner model 
used in the stacked ensemble model are given below. 
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4.2.1. Base Classifiers 
In the creation of base learners, models in different variations are developed and tested with 
CNN, DNN, GRU, and LSTM deep learning algorithms. GRU and LSTM based learners 
negatively affect the performance and time consumption of the stacked ensemble model. Using 
CNN and DNN algorithms together is more efficient in detecting the types of attacks in terms 
of performance and time consumption. Therefore, base models are developed based on CNN 
and DNN architectures. The architectural structures of CNN and DNN base learners used in 
the study are shown in Table 4. Different stacked ensemble models are developed with varying 
numbers of base models. Stacked ensembles are created with 2, 4, 6, 8, and 10 base learners, 
respectively. The number of CNN and DNN learners is the same in a stacked ensemble model 
(e.g., Six base classifier model consists of three CNN and three DNN base learners). The 
performance and generalization ability of stacked ensemble models are tested with different 
statistical methods. Base learners are trained with non-repetitive different subsets of the 
learning set to avoid overfitting and high correlation.  

CNN Base Learners: In this study, a CNN-based base learner is developed to classify the 
web attack type with a high detection rate. CNN base learners comprise concatenating the 
outputs of two structures consisting of the two-dimension convolution layer and the following 
max-pooling layer in a flatten layer. At the end of the base learners, there is a SoftMax layer 
for classification. 

DNN Base Learners: In the study, a robust DNN base learner is created for the 
classification of web attack types. There is a flatten layer that reduces the three-dimensional 
vector outputs of the embedding layer to two dimensions in DNN base learners. In addition, 
DNN base learners consist of two hidden DNN layers and a SoftMax layer for classification, 
respectively. 
 

Table 4. Architectures of base learner models in the second stage. 
Base 
Learner Layer (Type) Input Layer Input Shape Output Shape Act. 

Function 

C
N

N
 

Embedding Inputs (𝑚𝑚,𝑛𝑛) (𝑚𝑚,𝑛𝑛, 16) - 
Reshape Embedding (m,n,16) (m, n, 16, 1) - 
Conv2D - 1 Reshape (𝑚𝑚,𝑛𝑛, 16,1) (𝑚𝑚,𝑛𝑛, 1, 512) ReLU 
Conv2D - 1 Reshape (𝑚𝑚,𝑛𝑛, 1,512) (𝑚𝑚,𝑛𝑛 − 1, 1,512) ReLU 
MaxPooling2D - 1 Conv2D - 1 (𝑚𝑚,𝑛𝑛, 1,512) (𝑚𝑚, 1,1,512) - 
MaxPooling2D - 2 Conv2D - 2 (𝑚𝑚,𝑛𝑛 − 1, 512) (𝑚𝑚, 1,1,512) - 

Concatenate Pooling2D – 1 
and Pooling2D - 2 (𝑚𝑚, 1,1, 512) (𝑚𝑚, 1,2, 512) - 

Flatten Concatenate (𝑚𝑚, 2,1, 512) (𝑚𝑚, 1024) - 
Dense Flatten (𝑚𝑚, 1024) (𝑚𝑚, 8) softmax 

D
N

N
 

Embedding Inputs (𝑚𝑚,𝑛𝑛) (𝑚𝑚,𝑛𝑛, 16) - 
Flatten Embedding (m,n,16) (m, n*16) - 
Dense-1 Flatten (𝑚𝑚,𝑛𝑛 ∗ 16) (𝑚𝑚, 32) ReLU 
Dropout-1 Dense-1 (𝑚𝑚, 32) (𝑚𝑚, 32) - 
Dense-2 Dropout-1 (𝑚𝑚, 32) (𝑚𝑚, 32) ReLU 
Dropout-2 Dense-2 (𝑚𝑚, 32) (𝑚𝑚, 32) - 
Dense Dropout-2 (𝑚𝑚, 32) (𝑚𝑚, 8) Softmax 
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4.2.2. Meta Learner 
The proposed web attack type detection model is an integrated stacked ensemble model. In the 
integrated stacked ensemble model, a copy of the inputs is given to each base learner separately. 
Then the predictions of the base learners are concatenated and given as inputs to the meta-
learner model. The stacked method enables the collection of models to conduct as a single 
large model. This approach is based on training the meta-learner on how to best combine base 
model predictions. Commonly used methods such as hard voting, soft (weighted) voting, linear 
regression, Naive Bayes (NB), and different deep learning algorithms are tested as meta learner. 
The DNN model, which combines the outputs of the base models most successfully, is used 
as a meta learner in the proposed stacked ensemble model. The meta-learner consists of two 
hidden DNN layers, and a SoftMax output layer, respectively. 

The development of the proposed stacked ensemble model is carried out in two steps. 
Firstly, base learners are trained, and model parameters are recorded with weight values. Base 
learners are loaded and the stacked ensemble model is prepared for training by integrating the 
meta-learner. At this stage, all layers of the base learners are frozen and weight values are not 
allowed to change. Thereby, it is ensured that only the meta learner layers are trained. Model 
parameters and weight values are recorded after the meta-learner is trained with the training 
set reserved for it. 

4.2.3. Model Optimization and Fine-Tuning for the Second Stage 
Within the scope of this study, different optimization methods are used to increase the 
performance of base and meta learner models. The ReLU is used as the activation function in 
layers of base models. The Adam optimization algorithm with a learning rate of 0.001 is used 
in the optimization of the models. The categorical cross-entropy loss functions are used in the 
training of models. The batch size for each iteration is determined as 1024 in the training and 
testing of models. Finally, the fine-tuning of the ensemble is carried out to train all layers of 
ensemble models in the study. This process needs to be performed at a very low learning rate 
and few epochs. First of all, after the training of the meta-learner model is completed, all layers 
of the stacked model are de-frozen. Within the scope of the study, the fine-tuning process is 
carried out with 1 × 10−5 a learning rate in two epochs. Thus, it is ensured that base learners 
are well fitted with the meta learner. 

5. Evaluations and Experimental Results  
In this section, detailed information about the experimental results of the proposed method and 
performance evaluation with different measurement metrics are presented. First of all, the 
datasets used in the study are summarized, and experimental setups are explained. Afterward, 
performance and diversity analyses of the proposed method on two different web anomaly 
datasets are performed and the results are discussed. Finally, the proposed method is compared 
to previous studies and state-of-the-art DL models are developed in the current study. 

5.1. Datasets 
Network-based security studies and the number of public datasets in the literature are much 
higher than the number of studies and datasets for web application security. In some network-
based datasets, it is seen that some types of web attacks are also covered by network attack 
types. However, this situation does not reflect the real-world situation, and it is not possible to 
examine web content with NIDS. There are very few public benchmark datasets in the field of 
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web application security. Existing datasets are also out-of-date and do not contain up-to-date 
attack patterns. When the literature is examined, it is seen that web security studies are mostly 
based on binary-class (normal and anomalous), and the number of studies based on multi-class 
is few. There are two public benchmark web anomaly datasets commonly used in the literature. 
One of them is CSIC-2010 [9] which is binary-class, and the other is multi-class ECML-PKDD 
[30] datasets. ECML-PKDD and CSIC-2010-HTTP were created in 2007 and 2010, 
respectively, and do not include current web attack payloads. It is important to use real-world 
data in the development and testing of intrusion detection systems. Within the scope of the 
study, a multi-class web anomaly dataset called GAZI-HTTP is created, which consists of up-
to-date, comprehensive and real-world data. 

In this study, ECML-PKDD and GAZI-HTTP datasets are used in the development, testing 
and the comparisons of the proposed models. Information about the datasets used in the study 
is given in detail below. The datasets are randomly divided into three sub-sets, 60% for the 
training of base learners, 20% for the training of the meta learner, and the remaining 20% for 
testing all developed models. Separating the train sets of the base learners from the meta 
learner is important for avoiding high variance. The binary-class model in the first stage is 
trained with an 80% subset used in training the base and meta learner models.  

5.1.1. GAZI-HTTP Dataset 
Within the scope of this study, a web anomaly dataset named GAZI-HTTP is created based 

on the real world, covering different attack types in OWASP Top-Ten [3]. Web traffics are 
collected by two methods via honeypot system and internal network in the study. In the first 
method, all web requests incoming to two different publicly configured web applications are 
recorded. One of these applications is a WordPress based web application that looks like a 
crypto coin trading platform. The second web application is designed as an X-Cart based e-
commerce site. All requests to these web applications are tagged with the current OWASP 
Modsecurity CRS and recorded. In the second method, web requests in normal, and attack 
types are generated and sent to web applications hosted on internal web servers. In the second 
method, local copies of the same web applications are used. A large-scale and comprehensive 
web anomaly dataset is created by combining web requests from the real world via honeypots 
and internally generated web requests. The steps and details of the generation of the internal 
dataset are explained below.  
 

Table 5. Distributions of GAZI-HTTP dataset. 

 
 
 

Type Base Learners 
Train-Subset 

Meta Learners 
Train-Subset  Test Set Total 

Size Distribution 

Valid 44117 14706 14706 73529 67.74% 
SQLi 6482 2160 2161 10803 9.95% 
XSS 5483 1828 1828 9139 8.42% 
Command Injection 1941 647 647 3235 2.98% 
LFI 1731 577 577 2885 2.66% 
Open Redirect 1635 545 545 2725 2.51% 
CRLF 1566 522 522 2610 2.40% 
SSI 1178 393 392 1963 1.81% 
XXE 994 331 331 1656 1.53% 
Total 65127 21709 21709 108545 100% 
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Attack types and distributions in the GAZI-HTTP dataset are presented in Table 5. When 

the distribution is examined, it is seen that the GAZI-HTTP dataset is imbalanced. While 67.74% 
of web requests are "Valid", the remaining 32.36% consists of anomaly requests. In addition, 
the distribution of attack types is also imbalanced, in parallel with real-world attack types. 

Internal web anomaly dataset: Firstly, two different web applications are installed on local 
servers. Web applications are scanned with a spider tool and normal web requests and 
parameters received are recorded. Web requests which include normal and attack payloads 
sent using original requests, and parameters are recorded in different databases and labelled 
according to the type of payload. Payloads in normal requests are selected from values such 
as integers, strings, or dates in suitable with the values received by the requests. Normal 
payloads are created with word clusters such as the most used words in the world, countries, 
cities, names, and surnames. The attack payloads used in the study are created by combining 
the attack payloads browsed on the internet, primarily GitHub, and the payloads used by open-
source attack tools. The payload sets created in the study are very comprehensive and consist 
of attack types in the current OWASP Top-Ten list. To the best of our knowledge, there is no 
public web anomaly dataset as comprehensive and up-to-date as the GAZI-HTTP. 

5.1.2. ECML-PKDD HTTP Dataset 
This dataset was published at the ECML/PKDD conference in 2007, as a part of the Analysing 
Web Traffic ECML/PKDD 2007 Discovery Challenge [30]. There are 52296 HTTP requests 
in eight different classes, including “Valid” and seven different types of web attacks. The 
dataset is imbalanced and more than 66% of the data are labelled as “Valid”. The distribution 
of the labels in the dataset is shown in Table 6. 
 

Table 6. Distributions of ECML-PKDD dataset. 

5.2. Experimental Tools 
Kali Linux, Burp Suite, Paros, and TcpFlow are used for creating the GAZI-HTTP web 
anomaly dataset as web spiders, web attacking, and network sniffer tools. The Keras and the 
Tensorflow open-source platforms with Python programming language are used in the 
realization of the study. Additionally, panda, NumPy, scikit-learn, matplot libraries are used 
for data pre-processing, statistical analyses, and visualization. In the training and testing of the 
models, a computer with Intel 6850K 3.6 GHz i7 Processor, 16 GB RAM, GTX 1080 Ti 11 
GB GPU, 512 GB SSD configuration is used. 
 
 

Type Base Learners 
Train-Subset 

Meta Learners 
Train-Subset  Test Set Total Size Distribution 

Valid 21003 7001 7002 35006 66.94% 
Ldap Injection 1367 456 456 2279 4.36% 
OS Commanding 2052 684 684 3420 6.54% 
Path Traversal 1818 605 606 3029 5.79% 
SSI 1139 380 379 1898 3.63% 
SQLi 1536 512 512 2560 4.90% 
XPath Injection 1367 456 456 2279 4.36% 
XSS 1095 365 365 1825 3.49% 
Total 31377 10459 10460 52296 100% 
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5.4. Results and Discussions 
In this section, the experimental results of the proposed two-stage stacked ensemble model for 
web anomaly detection are presented and discussed in detail. The results of the models at each 
stage are discussed in separate sections. Firstly, the results of the binary-class DNN model in 
the first stage are presented. Secondly, the results of the base learners and the stacked ensemble 
model used for the attack type classification in the second stage are presented. In the last part, 
the results of the final combined two-stage model that classifies all web request types are 
presented and discussed. 

5.4.1. First Stage: Binary-Class Classifier Results 
Confusion matrices and performance evaluations of DNN models in the first stage based on 
the GAZI-HTTP and ECML PKDD test sets are shown in Table 7. The proposed DNN model 
achieves detection rates of 98.76%, 99.81% on the GAZI-HTTP and ECML-PKDD, 
respectively. FP rates are 0.72% and 0.11% for GAZI-HTTP and ECML-PKDD, respectively. 
When the performance of the proposed binary-class model is examined, it is seen that the 
model is not affected by imbalanced distribution and has very low FP rates. In addition, the 
high rates of bias-variance trade-off are provided with DNN model. 
 
Table 7. Confusion matrices and performance evaluations of binary-class classification in the first stage. 

   Predicted Class Performance Evaluations 

 Dataset Class Normal Abnormal Total Precision Recall F-Score ACC 

A
ct

ua
l C

la
ss

 

GAZI 
HTTP 

Normal 14600 106 14706 0.9847 0.9766 0.9806 
0.9876 Abnormal 164 6839 7003 0.9889 0.9928 0.9908 

Total / W. Avg. 14764 6945 21709 0.9876 0.9876 0.9875 

ECML 
PKDD 

Normal 3454 4 3458 0.9957 0.9988 0.9973 
0.9981 Abnormal 15 6987 7002 0.9994 0.9979 0.9986 

Total / W. Avg. 3469 6991 10460 0.9982 0.9982 0.9982 

5.4.2. Second Stage: Stacked Ensemble Models Results 
Five different stacked ensemble models are developed, consisting of 2, 4, 6, 8, and 10 base 
learners, half of which are CNN, and the remaining half are DNN models. Stacked ensemble 
models are compared with different statistical methods by evaluating their similarity, diversity, 
and performance. We aim to select the best stacked model that has high detection rates together 
with high generalization for the real-world WAF system. Classification performances and 
diversity analyses of stacked ensemble models are shown in Fig. 3 and Table 8, respectively. 
The highest and lowest detection rates for the GAZI-HTTP are achieved by ensemble models 
which consist of two and ten base learners with 96.10% and 94.65%, respectively. It is seen 
that diversity rates increase with the number of base learners on the GAZI-HTTP dataset, in 
contrast to the detection rates.  
 



KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 16, NO. 2, February 2022                               649 

 
 

Fig. 3. Performance evaluations of stacked ensemble models 
 

Table 8. Statistical diversity analyses of stacked ensemble models 
Base Classifiers 

Counts 
*Avg. Kappa 
Scores 

*Avg. Pearson 
p-values 

*Avg. Yule Q 
Similarity Diversity Avg. Double 

Fault 

G
A

Z
I 

H
T

T
P 

2 0.9177 0.5579 0.9669 0.0431 0.0298 
4 0.8786 0.476 0.9222 0.0747 0.0387 
6 0.8424 0.4289 0.8831 0.0999 0.0448 
8 0.8124 0.4149 0.8561 0.1196 0.0522 
10 0.7764 0.4153 0.8347 0.1413 0.0665 

E
C

M
L

 
PK

D
D

 

2 0.5844 0.2364 0.5850 0.3212 0.0925 
4 0.4957 0.2239 0.5071 0.3655 0.1259 
6 0.4582 0.2317 0.5038 0.3729 0.1506 
8 0.4262 0.2129 0.4642 0.3926 0.1608 
10 0.3937 0.2067 0.4441 0.4037 0.1783 

* It is inversely proportional to the diversity 
 

The highest and lowest detection rates for the ECML-PKDD are achieved by ensemble 
models which consist of six and eight base learners with 83.02% and 84.73%, respectively. 
Similarly, it is seen that diversity increases with the number of base learners for the ECML-
PKDD dataset. As the number of base learners’ increases, the sub-training set gets smaller; 
therefore, weak base-classifier models become dissimilar. The avg. Kappa scores, avg. 
Pearson p-values and the mean Yule Q similarities metrics are inversely proportional to 
diversity, and while these metric values decrease, the similarity between base learners 
decreases and diversity increases. As seen in Table 8, the avg. Kappa scores, avg. Pearson p-
values and mean Yule Q similarities decrease in direct proportion to the number of base 
learners. When Table 8 is examined, it is seen that the statistical similarities and diversities of 
stacked ensemble models generally have the best divergence when the number of base learners 
is 10, and it consists of the most similar models when the number of base learners is 2. 

The graph of detection rate and diversity trade-off for both datasets is presented in Fig. 4. 
When this graph is examined, it is seen that the classification performances and the diversities 
of the ensemble models in both datasets are generally inversely proportional. It is not the right 
approach to focus only on classification accuracies in ensemble models. To detect newly 
emerged web attacks, ensemble models should be developed with the ability to generalize; 
thus, have high diversity. When Fig. 4 is examined, it is seen that the best accuracy-diversity 
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trade-offs for both datasets are provided by ensemble models consisting of eight base learners 
(shown in blue areas in Fig. 4). For this reason, we decide to use a stacked ensemble consisting 
of eight base learners with both a high detection rate and high diversity.  

 
 

 
 

Fig. 4. Accuracy and diversity trade-offs of stacked ensemble models based on (a) GAZI-HTTP and 
(b) ECML-PKDD (blue areas show the best trade-off for the two datasets, together). 

 

5.4.3. Two-Stage Model Results 
The performances of the proposed two-stage model, which is formed by concatenating first 
stage and second stage models, are evaluated on test sets. The results below belong to the two-
stage model, which consists of eight base learners. Performance evaluations of two-stage 
models based on GAZI-HTTP and ECML-PKDD datasets are presented in Fig 5. Detection 
rates of 97.43% and 94.97% are achieved for GAZI-HTTP and ECML-PKDD, respectively. 
The weighted average of precision, recall, and F1-score on GAZI-HTTP are achieved 97.44%, 
97.43, and 97.43, respectively. Similarly, the average precision, recall, and F1-score on the 
ECML-PKDD test set are 94.84%, 94.77%, and 94.80%, respectively. It is seen that the 
proposed two-stage model generally has acceptable sensitivity and accuracy values for both 
datasets. When Fig. 5 is analysed by class-based, the best F1-scores are reached for the "Valid" 
label in both datasets, and 99.08% and 99.86% for GAZI-HTTP and ECML-PKDD, 
respectively. The worst class-based classification performance for the GAZI-HTTP dataset is 
for the "Remote Code Execution" (RCE) label, with the F1-score remaining at 85.71%. 
Similarly, the class with the worst F1-score for ECML-PKDD is the "Server Side Include" SSI 
label that only reached 48.08%. The main reason for this is seen when Tables 5 and 6, which 
show the distribution of datasets, are examined. Both datasets are imbalanced, and it is seen 
that the classes that have few number requests reached the least performance. In addition, some 
web attack types may contain very similar payload structures. For example, since arbitrary 
commands are contained in the command injection attack, the model is confused by the XSS, 
SQLi, and LFI attack patterns that contain similar commands. 
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Fig. 5. Performance evaluations of two-stage models based on (a) GAZI-HTTP and (b) ECML-PKDD 
 

5.4.4. Comparison with State-of-the-Art DL Algorithms and Previous Studies 
Single classifier models based on DL algorithms, commonly used in web security, are 
developed for the purpose of performance comparisons with the proposed model in the study. 
DNN, CNN, LSTM, and GRU algorithms are used in the development of single classifiers. 
Multi-class performance comparisons of the proposed two-stage stacked ensemble model with 
DL models are shown in Fig. 6. Detection rates of 96.16%, 96.14%, 94.62% and 89.28% on 
GAZI-HTTP are achieved with the DNN, CNN, GRU and LSTM models, respectively. It is 
seen that the proposed model reached the highest detection rate, and a significant improvement 
is achieved with 97.43%. Similarly, detection rates of 88.76%, 90.20%, 86.84% and 86.57% 
are achieved for ECML-PKDD with the DNN, CNN, GRU and LSTM models, respectively. 
With the proposed model, 94.77% detection rate is achieved on ECML-PKDD, and 4.57% 
better classification success is achieved than the most successful single DL algorithm. It is 
obviously seen that the proposed model has significantly improved multi-class web anomaly 
detection compared to state-of-the-art DL models based on one algorithm. 
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Fig. 6. Performance comparison of the proposed model with DL based one classifier models 

 
Previous studies using the benchmark ECML-PKDD dataset are compared to the proposed 

model. When the literature is examined, it is seen that most of the studies are carried out based 
on binary-class, so multi-class studies are few. The comparison of the proposed model with 
other studies is shown in Table 9. It is seen that Nguyen and et al. [10] have reached the 
highest classification success so far with a detection rate of 98.80% for binary classification 
on ECML-PKDD. Since feature extraction is performed only by statistical methods in the 
study [10], the content of web requests is not considered semantically and is not suitable for a 
real-world system. When the results of the A-ExIDS model, proposed in study [9], are 
examined, it is seen that while high accuracy is provided for normal web requests, it is lower 
in detecting attack types. As a result, it causes high FP and is not suitable for WAF systems. 
It is seen that Vartouni et. al. [13] reached an 84.13% detection rate for ECML-PKDD. One 
of the important reasons for the low accuracy rate in the study [13] is the use of N-gram based 
feature extraction, which does not include semantic representations. When the results in the 
study conducted by Odumuyiwa et al [11] are examined in detail, the weighted average 
detection rate of the single classifier CNN model for attack types remains at 84.0%.  Thus, it 
is seen that even if deep learning is used, attack types cannot be detected with high sensitivity 
with a single algorithm-based classifier, and high bias occurs due to an imbalanced dataset. 

In our study, this rate is improved to reach 99.81% for binary-class. The single classifier 
based on CNN in the current study achieves the highest success among other models with a 
detection rate of 90.20% for multi-class on ECML-PKDD. The proposed two-stage stacked 
ensemble model achieves a detection rate of 94.77% by providing a 4.57% improvement on 
ECML-PKDD. It is seen that the proposed model is significantly more successful than other 
studies in detecting both binary-class and multi-class web anomalies. 
 

Table 9. Comparison of results with previous studies on ECML-PKDD dataset 

Author Model Binary 
Class 

Multi 
Class Author Model Binary 

Class 
Multi 
Class 

Nguyen and 
Franke [9] 

Naive 
Bayes 85.12% N/A Raissi et al. [8] Static 

Method 87.93% 69.00% 

Nguyen and 
Franke [9] 

Bayes 
Network 86.95% N/A Exbrayat [4] N-similarity 90.00% N/A 

Nguyen and 
Franke [9] 

RBF 
Network 87.69% N/A Pachopoulos et al. 

[12] 
Decision 
Tree 77.00% N/A 
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Nguyen and 
Franke [9] 

Hedge 
Boosting 86.30% N/A Galagher et al. [5] Tf-Idf 94.00% N/A 

Nguyen and 
Franke [9] A-ExIDS 92.56% N/A Odumuyiwa et al. 

[11] DNN 91.90% N/A 

Nguyen et al. 
[10] 

Decision 
Tree 96.37% N/A Odumuyiwa et al. 

[11] CNN 94.70% N/A 

Nguyen et al. 
[10] CART 96.11% N/A Current Study DNN 99.81% 88.76% 

Nguyen et al. 
[10] 

Random 
Tree 96.89% N/A Current Study CNN 98.41% 90.20% 

Nguyen et al. 
[10] 

Random 
Forest 98.80% N/A Current Study GRU 98.04% 86.84% 

Tekerek et al. 
[15] 

Hybrid 
Model 93.30% N/A Current Study LSTM 97.84% 86.57% 

Vartouni et al. 
[13] DBN 84.13% N/A Proposed Model Two-Stage 99.81% 94.77% 

N/A: Not Available 

5.4.5. The Time and Space Complexities of the Proposed Model  
In the development of a real-time WAF system, time and space complexity is important in 
terms of computational resources and time latency. Deep learning algorithms require a 
significant amount of computation based on model depth and a number of parameters, in which 
intensive matrix multiplications are performed. In calculating the space complexity of deep 
learning algorithms, it should be taken into account since the outputs of neurons in each layer 
are transferred to the next layer and must be kept in memory. In addition, values of the 
parameters and the weights in the network should be stored in the memory. Therefore, the 
space complexity of the proposed model based on deep learning depends on the number of 
layers and parameters it contains and is linear. However, in proportion to the network size, the 
memory space allocation that the deep learning model will keep in memory depends on the 
number of inputs, the number of outputs of neurons, and the number of parameters included 
in the model, and space complexity is still linear [31]. 

The time complexity changes asynchronously depending on the number of inputs, the 
number of layers, the number of neurons in the layers, the number of outputs of the neurons, 
the initial values of the neuron weights and parameters, the loss function, the number of 
training epochs or the stopping criterion [31]. To absolute calculate the time complexities of 
deep learning-based models, it is necessary to determine how many neuron connections are 
active during the training of the DL network created. However, the number of active neuron 
connections can constantly change according to the changing learning parameters in a deep 
learning network. Since the proposed WAF model has two stages, it is processed only in the 
first stage or in both stages, depending on whether the request is normal or attack. Normal 
requests are processed only in the binary-class DNN model in the first stage. Bienstock et. al. 
[32] proposed a method to calculate the general time complexity of different deep learning 
architectures with their experimental study. The time complexity of the binary-class DNN 
model in the first stage of the method we propose based on this method [32] is seen in (14), 
where m denotes the input dimension, n denotes the output dimension, k denotes the number 
of layers, N denotes the total number of parameters, Dtrain and Dtest are element number of the 
train and test sets and Eepoch is the number of training epochs. 

( )( ) ( )
2

log( )
n m N

O k
train test epochO m m w D D E

+ + 
+ 

 
  (14) 
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Similarly, the general time complexity of the proposed second-stage attack type detection 
model, which includes base and meta learner models based on CNN and DNN models, is also 
seen in (15), where Mdnn is the number of meta learners (one meta learner was used in the 
study), Bdnn and Bcnn are the numbers of base learners based on DNN and CNN algorithm, 
respectively [32]. 

( ) ( )( ) ( )( ) ( )
2

* log
n m N

O k
dnn dnn cnn train test epochO m B M m B w D D E

+ + 
+ + + 

 
 (15) 

In addition to the time complexity above, the average time requirements of the web requests 
in the test set were calculated in order to see the time efficiency of the proposed model. Also, 
the time performances of the models based on a single deep learning algorithm and the 
proposed model were compared. In addition to the improvement of detection rate with the 
proposed model, reducing latency for normal web requests is one of the important aims in this 
study. Weighted average detection times of the proposed model for the first stage, second stage, 
two-stage and comparisons with models based on single DL algorithms are presented in Table 
10. In the first stage, it takes an average of 0.041 and 0.044 milliseconds (ms) to classify a 
request for GAZI-HTTP and ECML-PKDD, respectively. In the second stage, the 
classification of attack types takes 0.339 and 0.847 ms, respectively. The average time 
consumption of multi-class detection of an unknown request in two stages takes 0.129 and 
0.137 ms for GAZI-HTTP and ECML-PKDD, respectively. It is obviously clear that the delay 
of normal web requests due to anomaly detection is prevented with the proposed two-stage 
model. The computer used in the study can process approximately 25000 normal user requests 
per second. Moreover, the number of web requests that can be processed per unit time can be 
increased with a more powerful machine to be positioned in inline mode. 
 
Table 10. Time performances of the proposed model and comparisons with WAF models based on a 

single algorithm 
  Single classifier DL models Proposed model 
 Dataset DNN CNN GRU LSTM First 

Stage 
Second 
Stage 

W. avg. of 
two-stage 

Time 
(ms) 

GAZI HTTP 0.035  0.094 12.62 14.97 0.041 0.339 0.129 
ECML PKDD 0.048 0.138 12.849 15.634 0.044 0.847 0.137 

6. Conclusions 
In this study, a two-stage deep learning-based stacked ensemble model is proposed for 
effective web anomaly detection. In the first stage of the proposed model, normal web requests 
and attack requests are classified with a robust binary-class DNN model. In the second stage, 
the types of attack requests are classified with the DL based stacked ensemble model. Thanks 
to the proposed two-stage structure, the multi-class classification complexity used to determine 
the attack type is transferred to the second stage. Thus, normal users’ requests can be processed 
with high accuracy and speed. Statistical diversity analyses are carried out to determine the 
generalization power of the proposed model in the study. As a result of the analyses, the 
stacked ensemble model with both high accuracy and high diversity is determined. With this 
study, we propose a model that classifies web requests based on multi-class with high 
sensitivity and without time delay for normal clients. With the proposed model, improvement 
is provided for GAZI-HTTP and ECML-PKDD by 1.27% and 4.57%, respectively, compared 
to other models, and the detection rates of 97.43% and 94.77% are achieved, respectively. It 
is seen that the proposed model has a significant performance improvement compared to the 
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state-of-the-art DL algorithms and previous studies. In addition, a comprehensive and robust 
web anomaly dataset named GAZI-HTTP is created within the scope of the study. In future 
studies, it is planned to develop hybrid DL based models in which attack types are handled 
separately. Also, the use of base learners based on manual feature extraction together with the 
base learners based on word embedding in the ensemble model will increase the power of 
generalization. Applying techniques such as resampling or data augmentation to address the 
problem of low classification performance for some classes resulting from imbalanced datasets 
will increase sensitivity and accuracy. 

References 
[1] EdgeScan, “Vulnerability Statistics Report,” pp. 4-17, 2019. [Online]. Available: 

https://www.edgescan.com/wp-content/uploads/2019/02/edgescan-Vulnerability-Stats-Report-
2019.pdf  

[2] M. Sevri, and H. Karacan, “Deep learning based web application security,” in Proc. of 2nd Int. 
Conf. on Advanced Technologies, in Proc. Computer Engineering and Science (ICATCES), 
Antalya, Turkey, pp. 349-354, Apr. 2019. Article (CrossRef Link) 

[3] Owasp, “Top 10 Application Security Risks,” 2017. [Online]. Available: https://owasp.org/www-
project-top-ten/2017/  

[4] M. Exbrayat, “ECML/PKDD challenge: analyzing web traffic a boundaries signature approach,” 
in Proc. of 18nd Int. Conf. ECML/PKDD, Warsaw, Poland, pp. 53-64, Sep., 2007.  
Article (CrossRef Link)  

[5] B. Gallagher, and T. Eliassi-Rad, “Classification of HTTP attacks: a study on the ECML/PKDD 
2007 discovery challenge,” 2009. Article (CrossRef Link) 

[6] L. Liu, P. Wang, J. Lin, and L. Liu, “Intrusion Detection of Imbalanced Network Traffic Based on 
Machine Learning and Deep Learning,” IEEE Access, vol. 9, pp. 7550-7563, 2020.  
Article (CrossRef Link) 

[7] C. Kruegel, and G. Vigna, “Anomaly detection of web-based attacks” in Proc. of 10th ACM Conf. 
on Computer and Communications Security, pp. 251-261, Oct. 2003. Article (CrossRef Link)  

[8] C. Raissi, J. Brissaud, G. Dray, P. Poncelet, M. Roche, and M. Teisseire, “Web analyzing traffic 
challenge: description and results,” in Proc. of 18nd Int. Conf. ECML/PKDD, Warsaw, Poland, pp. 
47-52, Sep., 2007. Article (CrossRef Link) 

[9] H.T. Nguyen, and K. Franke, “Adaptive Intrusion Detection System via online machine learning,” 
in Proc. of 12th Int. Conf. on Hybrid Intelligent Systems (HIS), pp. 271-277, Dec. 2012.  
Article (CrossRef Link) 

[10] H.T. Nguyen, C. Torrano-Gimenez, G. Alvarez, K. Franke, and S. Petrovic, “Enhancing the 
effectiveness of web application firewalls by generic feature selection,” Logic Journal of IGPL, 
vol. 21, no. 4, pp. 560-570, Aug. 2013. Article (CrossRef Link) 

[11] V. Odumuyiwa, and A. Chibueze, “Automatic Detection of HTTP Injection Attacks using 
Convolutional Neural Network and Deep Neural Network,” J. of Cyber Security and Mobility, vol. 
9, No. 4, pp. 489-514, 2020. Article (CrossRef Link) 

[12] K. Pachopoulos, D. Valsamou, D. Mavroeidis, and M. Vazirgiannis, “Feature extraction from web 
traffic data for the application of data mining algorithms in attack identification,” in Proc. of 18nd 
Int. Conf. ECML/PKDD, Warsaw, Poland, pp. 65-70, Sep., 2007. Article (CrossRef Link)  

[13] A.M. Vartouni, M. Teshnehlab, and S.S. Kashi, “Leveraging deep neural networks for anomaly-
based web application firewall,” IET Information Security, vol. 13, no. 4, pp. 352-361, 2019. 
Article (CrossRef Link) 

[14] L. Kagal, T. Finin, and A. Joshi, “A policy based approach to security for the semantic web,” in 
Proc. of 2nd Int. Semantic Web Conf., Sanibel Island, FL, USA, pp. 402-418, Oct., 2003.  
Article (CrossRef Link) 

https://www.edgescan.com/wp-content/uploads/2019/02/edgescan-Vulnerability-Stats-Report-2019.pdf
https://www.edgescan.com/wp-content/uploads/2019/02/edgescan-Vulnerability-Stats-Report-2019.pdf
https://www.icatces.org/2019/book.php
https://owasp.org/www-project-top-ten/2017/
https://owasp.org/www-project-top-ten/2017/
https://fileadmin.cs.lth.se/ai/Proceedings/ECML-PKDD%202007/DC/workshop_print.pdf#page=61
https://doi.org/10.2172/1113394
https://doi.org/10.1109/ACCESS.2020.3048198
https://doi.org/10.1145/948109.948144
https://fileadmin.cs.lth.se/ai/Proceedings/ECML-PKDD%202007/DC/workshop_print.pdf#page=55
https://doi.org/10.1109/HIS.2012.6421346
https://doi.org/10.1093/jigpal/jzs033
https://doi.org/10.13052/jcsm2245-1439.941
https://fileadmin.cs.lth.se/ai/Proceedings/ECML-PKDD%202007/DC/workshop_print.pdf#page=73
https://doi.org/10.1049/iet-ifs.2018.5404
https://link.springer.com/chapter/10.1007/978-3-540-39718-2_26


656                                                                                 Sevri and Karacan: Two Stage Deep Learning Based Stacked  
Ensemble Model for Web Application Security 

[15] A. Tekerek, C. Gemci, and O.F. Bay, “Design and implementation of a web-based intrusion 
prevention system: a new hybrid model,” J. of the Faculty of Engineering and Architecture of Gazi 
University, vol. 31, no. 3, pp. 646-655. 2016. Article (CrossRef Link) 

[16] C. Hwang, D. Kim and T. Lee, "Semi-supervised based Unknown Attack Detection in EDR 
Environment," KSII Transactions on Internet and Information Systems, vol. 14, no. 12, pp. 4909-
4926, 2020. Article (CrossRef Link) 

[17] B. A. Tama, L. Nkenyereye, S. R. Islam, and K.-S. Kwak, "An enhanced anomaly detection in 
web traffic using a stack of classifier ensemble," IEEE Access, vol. 8, pp. 24120-24134, 2020. 
Article (CrossRef Link) 

[18] Y. Luo, S. Cheng, C. Liu and F. Jiang, "PU Learning in Payload-based Web Anomaly 
Detection," in Proc. of 3rd Int. Conf. on Security of Smart Cities, Industrial Control System and 
Communications (SSIC), Shanghai, China, pp. 1-5, Oct., 2018. Article (CrossRef Link) 

[19] Catak FO, “Two-layer malicious network flow detection system with sparse linear model based 
feature selection,” Journal of the National Science Foundation of Sri Lanka, vol. 46, no. 4, pp. 
601-612, 2018. Article (CrossRef Link) 

[20] A. Al-Alyan and S. Al-Ahmadi, "Robust URL Phishing Detection Based on Deep Learning," KSII 
Transactions on Internet and Information Systems, vol. 14, no. 7, pp. 2752-2768, 2020.  
Article (CrossRef Link) 

[21] J. Surowiecki, “The wisdom of crowds,” Anchor, Aug. 2005. Article (CrossRef Link) 
[22] K. Guzel and G. Bilgin, "Classification of Nuclei in Colon Cancer Images using Ensemble of Deep 

Learned Features," in Proc. of Medical Technologies Congress (TIPTEKNO), Izmir, Turkey, pp. 
1-4, Oct., 2019. Article (CrossRef Link) 

[23] T.G. Dietterich, “An Experimental Comparison of Three Methods for Constructing Ensembles of 
Decision Trees: Bagging, Boosting, and Randomization,” Machine Learning, vol. 40, pp. 139–
157, Aug. 2000. Article (CrossRef Link) 

[24] D. H. Wolpert, "Stacked generalization," Neural networks, vol. 5, no. 2, pp. 241-259, 1992.  
Article (CrossRef Link) 

[25] C. Zhang and Y. Ma, (ed.), Ensemble machine learning: methods and applications, Springer 
Science & Business Media, 2012. Article (CrossRef Link) 

[26] J. Schmidhuber, "Deep learning in neural networks: An overview," Neural networks, vol. 61, pp. 
85-117, 2015. Article (CrossRef Link) 

[27] Y. LeCun, Y. Bengio, and G. Hinton, "Deep learning," Nature, vol. 521, no. 7553, pp. 436-444, 
2015. Article (CrossRef Link) 

[28] Y. Bi, "The impact of diversity on the accuracy of evidential classifier ensembles," Int. J. of 
Approximate Reasoning, vol. 53, no. 4, pp. 584-607, 2012. Article (CrossRef Link) 

[29] S.S. Choi, S.H. Cha, and C.C. Tappert, "A survey of binary similarity and distance measures," J. 
of Systemics, Cybernetics and Informatics, vol. 8, no. 1, pp. 43-48, 2010. Article (CrossRef Link) 

[30] ECML/PKDD, "Analyzing Web Traffic ECML/PKDD 2007 Discovery Challenge," in Proc. of 
18nd Int. Conf. ECML/PKDD, Warsaw, Poland, Sep., 2007. Article (CrossRef Link) 

[31] G. Serpen and G. Zhenning, “Complexity analysis of multilayer perceptron neural network 
embedded into a wireless sensor network,” Procedia Computer Science, vol. 36, pp. 192-197, 
2014. Article (CrossRef Link) 

[32] D. Bienstock, M. Gonzalo, and Sebastian Pokutta, “Principled deep neural network training 
through linear programming,” arXiv preprint arXiv:1810.03218, 2018. Article (CrossRef Link) 

 
 
 
 
 
 
 
 
 

https://dergipark.org.tr/tr/download/article-file/225412
https://doi.org/10.3837/tiis.2020.12.016
https://doi.org/10.1109/ACCESS.2020.2969428
https://doi.org/10.1109/SSIC.2018.8556662
http://doi.org/10.4038/jnsfsr.v46i4.8560
https://doi.org/10.3837/tiis.2020.07.001
https://dl.acm.org/doi/book/10.5555/1095645
https://doi.org/10.1109/TIPTEKNO.2019.8895224
https://doi.org/10.1023/A:1007607513941
https://doi.org/10.1016/S0893-6080(05)80023-1
https://doi.org/10.1007/978-1-4419-9326-7
https://doi.org/10.1016/j.neunet.2014.09.003
https://doi.org/10.1038/nature14539
https://doi.org/10.1016/j.ijar.2011.12.011
http://www.iiisci.org/journal/sci/FullText.asp?var=&id=GS315JG
https://fileadmin.cs.lth.se/ai/Proceedings/ECML-PKDD%202007/DC/workshop_print.pdf
https://doi.org/10.1016/j.procs.2014.09.078
https://arxiv.org/abs/1810.03218


KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 16, NO. 2, February 2022                               657 

 
Mehmet Sevri was born in Gaziantep, Turkey in 1987. He received the B.S. degree in 
Computer Engineering from Karadeniz Technical University, Trabzon in 2011 and M.S. 
degree in Information Systems from Gazi University, Ankara, in 2016. He is a Ph.D. candidate 
in Information System at Gazi University, Ankara. 
He is a Research Assistant in the Informatics Institute at Gazi University since 2013. His 
research interest includes deep learning, cyber security and web application security. 
 
 
 

 
Hacer Karacan was born in Erzurum, Turkey in 1980. She graduated from the department 
of computer education from Middle East Technical University (METU), Ankara in 2002. She 
received her master’s degree in the cognitive science department, at METU in 2005, and 
completed her Ph.D. again in the cognitive science department, at METU in 2007. She started 
her academic career as a research assistant in the Department of Cognitive Science, METU in 
2002. During her PhD studies, she worked as a visiting researcher at the University of 
Rochester (USA).  
She is an Associate Professor in the Computer Engineering department at Gazi University, 
where she has been a faculty member since 2007. Her research focuses on using artificial 
intelligence methods to gain data insights. She is particularly interested in understanding data 
flow patterns and potential causal factors in the cyber security problems. 

 


